From: "Guardado pelo Windows Internet Explorer 8" Subject: FQA - Ficha de Trabalho Digital 2 Date: Fri, 7 May 2010 22:04:19 +0100 MIME-Version: 1.0 Content-Type: multipart/related; type="text/html"; boundary="----=_NextPart_000_0000_01CAEE31.3E0A96D0" X-MimeOLE: Produced By Microsoft MimeOLE V6.1.7600.16385 This is a multi-part message in MIME format. ------=_NextPart_000_0000_01CAEE31.3E0A96D0 Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable Content-Location: file://C:\Users\User\Desktop\Pagina\Quizzes\ForcaMov2\ForMov2.html =EF=BB=BF FQA - Ficha de Trabalho Digital 2

FQA - Ficha de Trabalho Digital 2
Prof. = Paulo=20 Campos

N=C3=A3o se esque=C3=A7a=20 de activar o controlo (que provavelmente o Windows bloqueou _ponto de = exclama=C3=A7=C3=A3o=20 no cimo da folha), para que a prova possa ser corrigida.


1
Assinala as op=C3=A7=C3=B5es verdadeiras. (10 pontos)
=20 H=C3=A1 movimentos uniformemente variados sem=20 acelera=C3=A7=C3=A3o.
Um movimento = uniforme n=C3=A3o tem=20 acelera=C3=A7=C3=A3o.
Num movimento = rect=C3=ADlineo e=20 uniforme n=C3=A3o h=C3=A1 acelera=C3=A7=C3=A3o.
Um movimento=20 pode ter uma resultante de for=C3=A7as n=C3=A3o nula e ser = uniforme.
Se a resultante das for=C3=A7as que actuam num = corpo =C3=A9 diferente=20 de zero, o corpo tem acelera=C3=A7=C3=A3o.
A acelera=C3=A7=C3=A3o=20 centr=C3=ADpta dum objecto =C3=A9 uma constante diferente de zero, = num movimento=20 rect=C3=ADlineo uniformemente acelerado.
   
2
Um corpo move-se rectilineamente de acordo com a seguinte lei = das=20 posi=C3=A7=C3=B5es:
x(t) =3D 3.t2 - 2.t + 5 = (SI).
Sobre o movimento=20 deste corpo, podemos dizer que:
(Assinala as op=C3=A7=C3=B5es = correctas) (10=20 pontos)
=20 A=20 acelera=C3=A7=C3=A3o centr=C3=ADpta =C3=A9 uma constante n=C3=A3o = nula.
A lei das velocidades =C3=A9 vx =3D -2 = + 6.t.
=C3=89 uniformemente variado com = acelera=C3=A7=C3=A3o de valor 6=20 m/s2.
=C3=89 = uniforme.
O valor da velocidade inicial =C3=A9 5 = m/s.
   
3
A fun=C3=A7=C3=A3o seguinte indica a posi=C3=A7=C3=A3o de um = objecto, lan=C3=A7ado da altura de=20 1,0 m, na vertical, dirigido para cima.
y =3D 1 + 5.t - = 4,9.t2=20 (SI).
Sobre este objecto podemos afirmar que:
(Assinala a(s) = op=C3=A7=C3=A3o(=C3=B5es) correctas). (10 pontos)
=20 O=20 movimento do objecto come=C3=A7ou por ser uniformemente retardado, = passando=20 depois a movimento uniformemente acelerado.
O objecto percorreu uma dist=C3=A2ncia de 1,0 = m.
O objecto permaneceu cerca de 1,2 s no = ar.
A alturam=C3=A1xima atingida pelo objecto foi de = 2,3 m.
A resist=C3=AAncia do ar, neste caso, n=C3=A3o = foi desprez=C3=A1vel.
   
4
O bloco da figura desce o plano inclinado, com atrito=20 desprez=C3=A1vel.
Sobre o bloco podemos afirmar que: (10 = pontos)

Figura 1

Tem um movimento uniformemente acelerado com = acelera=C3=A7=C3=A3o=20 inferior a g.
Tem um movimento = uniformemente acelerado=20 com acelera=C3=A7=C3=A3o superior a g.
Antes de = atingir a base=20 do plano atinge a velocidade limite.
Tem um = movimento=20 uniformemente acelerado com acelera=C3=A7=C3=A3o g.
Tem um movimento uniforme.
   
5
Um corpo, na posi=C3=A7=C3=A3o x =3D 2m, move-se com uma = velocidade de valor 5=20 m/s, com uma taxa de diminui=C3=A7=C3=A3o de 2 m/s em cada = segundo.
Qual o valor=20 da acelera=C3=A7=C3=A3o do corpo? (10 pontos)
3 m/s2.
5 m.
2 m/s2.
2,5 m/s2.
10=20 m/s2.
   
6
A lei das posi=C3=A7=C3=B5es do corpo referido na al=C3=ADnea = anterior =C3=A9: (10=20 pontos)
x =3D 2 + 5.t - = 2.t2.
x =3D 2 + 5.t - 2.t2.
x =3D 2 + 5.t + 10.t2.
x =3D 2 + 5.t - t2.
x =3D 2 + 5.t + t2.
   
7
No instante da figura, o carro A movimenta-se com rapidez = constante de=20 0,50 m/s, e o carro B tem uma velocidade de valor 0,40 m/s que = aumenta com=20 uma acelera=C3=A7=C3=A3o de 0,50 m/s2.
Os carros = encontram-se na=20 posi=C3=A7=C3=A3o X, no instante Y (num referencial que tem como = origem a posi=C3=A7=C3=A3o do=20 carro na figura).
X e Y t=C3=AAm, respectivamente os valores = de: (10=20 pontos)

Figura 2

2,00 m e 1,89 s.
3,30 m e = 3,30=20 s.
Situa=C3=A7=C3=A3o imposs=C3=ADvel, = pois os carros n=C3=A3o se=20 encontram.
0,50 m e 3,02 s.
1,05 m e 2,10 s.
   
8
O gr=C3=A1fico da figura traduz a queda duma pena sujeita =C3=A0 = resist=C3=AAncia do=20 ar.
Analisando o gr=C3=A1fico, podemos afirmar que: (10 = pontos)

Figura 3

= O movimento da=20 pena, na zona C, =C3=A9 uniforme.
Na zona A a=20 resist=C3=AAncia do ar =C3=A9 despres=C3=A1vel e a pena cai com = acelera=C3=A7=C3=A3o g.
A acelera=C3=A7=C3=A3o da pena =C3=A9 constante e = inferior a g.
A acelera=C3=A7=C3=A3o da pena =C3=A9 constante e = vale g.
Ao chegar ao solo o valor da resist=C3=AAncia do = ar =C3=A9 igual ao=20 do peso da pena.
   
9
Dizer que a frequ=C3=AAncia de um movimento circular e uniforme = =C3=A9 0,5 Hz,=20 significa que... (10 pontos)
0,5 s =C3=A9 o tempo que leva a = efectuar uma=20 volta.
ocorre 0,5 voltas em o,5 s.
o corpo movimenta-se com pouca rapidez.
4s =C3=A9 o tempo de 2 voltas completas.
o movimento tem uma acelera=C3=A7=C3=A3o de 2 = m/s2.
   
10
A bola da figura, de 200g, foi largada do cimo da calote = esf=C3=A9rica de=20 20 cm de raio. O valor da sua velocidade em A =C3=A9 de 2 = m/s.
O valor da=20 for=C3=A7a que a superf=C3=ADcie exerce na bola = =C3=A9...
(Considere g =3D 10=20 m/s2.) (10 pontos)

Figura 4

2 kg.
2 = N.
200 g.
6 = N.
4 N.
   
------=_NextPart_000_0000_01CAEE31.3E0A96D0 Content-Type: image/jpeg Content-Transfer-Encoding: base64 Content-Location: file:///C:/Users/User/Desktop/Pagina/Quizzes/ForcaMov2/sqrsrc9z4YoR/1K0N0S000.JPG /9j/4AAQSkZJRgABAQEASABIAAD//gAMQXBwbGVNYXJrCv/bAIQAAwICAgICAwICAgMDAwMEBgQE BAQEBwUGBQYJCAkJCAgICAkKDQsJCg0KCAgMEAwNDg4PDw8JCxAREA4RDQ4PDgEDAwMEAwQHBAQH DgoICg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O/8QB ogAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJ CgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJ ChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeI iYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq 8fLz9PX29/j5+hEAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMz UvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3 eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna 4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgAdgEPAwEhAAIRAQMRAf/aAAwDAQACEQMRAD8A/VOigAoo AKKACigAooAKKACigAooAKKACigAooAKKAExikz7UWuK9h1FAwooAKKACigAooAKKACigAooAKKA CigAooAKKACigAooAKKAE3Cmb03bN1ACNIkY615lrX7Qfwc0PxZp/gy6+IWlT67qd/8A2Xb2Ni/2 6VbreieTP5CP5B3uP9Zs/j/uGuarXVHqb0qMquyPTofu1JXSYBRQAUUAFFABRQAUUAFFABRQAUUA FFABRQAUUAFFABRQBHR93NZyfLGRe5518RfjV8LPhWkkvjjxvpelyFI5zZyTl7yRGfYJI7aPfNIm /H3E+TDuelfKfj3/AIKUQPE1t8MPAUsrSQxvHd67LsVJ9/zobWD76bP4/PR9/wDB8nz/AD+aZ9DC wtT3Pay3Jp4x+9oj5l+KX7R3xm+LsUtj4v8AGdw+lPNJOmmWaR2llsMiSIjxp/r0TYmzz/M2f9dP MrzE7AvybP8AP/bPzP8A4uvi6mZVMXWvNn2kMsp4KDowR+1Pwt8b2HxJ+H3h7x1p3lRwa1p8N40U Vwk4hmdP3kJkTguj70f/AG0NdgGr9Roz9pThJH5jVhyVZxJKK3ICigAooAKKACigAooAKKACigAo oAKKACigAooAKKAI2riPi54Rn8dfDzxB4WspfIv7qz36bcedJB9m1GE+daTeYnzp5c8cL7x/crmx LtTmXR1aPxff9yreZI/yff8A+Af/AGdMf739+vyDEc6qWmfrVCEWl7MXBpKynJTd4oqMZU5e0mfo 3/wTn8aHW/hRqfg+fU45rzw3qj+TbeSU+zWVynmQnfsxJvn+2v8AfzX1+rfLmv1bJ6jqYGEmfl2Z Q5MXNDl29qTfH/fWvXOEXev94U6gAooAKKACigAooAKKACigAooAKKACigAooAKKAGVDMn+xv+es 3rCwI/JP9sL4fT/Dv9oDxLC0csdl4hn/ALds5biRJHm+0/69/k+5sn89ER/4ErxZ/v8AXfX5JmtP kxU0fqmW1fa4ajJdBc0Yrz3aEjs5ZOd2fSf7Anja+8OfHq38LDzprDxdY3NlNClxsRJ4Ue6jmdP+ WmxIJI/+27/9tP1DT7q79u6v0nhqq62C5Ox+fcS01Txzkjl/G3xD8BfDrTbfXfiD430Pwzpt1ObW K91jUoLCB52QuiJJO6JvKRu+OfuPXzJ8RP8AgqR+yD8PjdQWvjbVPGd9DevYS2vhzTXnKY8zfNHP deRazwfIgDxzyb96FE2cj6Y8A5v4Cf8ABTL/AIXx8evDXwh074Cat4f0fxj/AGjcaLrmoawQ93Y2 0d66Ti1+y7OXsZIX8ueREkEib38uvutN+z5/vUAPooAKKACigAooAKKACigAooAKKACigAooAKKA ENN+VR6VH2rAfHn/AAUe8BNr3wz0jx9aJcmXwpf/AGe4CPGiJa3myN3ff87/AL6O0T5OcSP/AL8f 5zv8m/f8mz/xzZX5xxBRtjZJI+/4bq8+Cd+hHd3lrpsDXV7dQ20SffaV9iJXL6x8WPBmj+bHJrH2 yWHZ+6tE37/9x/uVx4HJKuMltoenjM3p0I3TO5+B0P7SXjPxn4T8Y/Bz9nfxBrNnBrUGoabqd1aO mkXCWUzySIbt/Itd++F03+f99NiYd6+uoPgB/wAFRvjmttcfFj9ovSvhXod7fXN/cad4dYJqelbf PSCFDpyR+fDzHhH1GT5Njyb5I9lfomWZfHL4cqPz3M8Z9dqc7N/wN/wSO+B1vqMPiv4xeOPGvxJ8 QzXV3da093d/2baapcTPJ+8kSPfdq6bw+8XXzyAvnY5Svpb4Zfstfs9fBsabJ8N/gz4X0jUNGM5s 9SFgl1qSeZv8zGoz77o8TSJ87/cby/uV6R558v8Axi/5TG/Avd/0IF7/AOiPEVfoFQAUUAFFABRQ AUUAFFABRQAUUAFFABRQAUUAFN3r/eFAGZq+s6ZoOl3ut65qVrpunadbyXV5d3cyQQ20Ma73kkdz sSNEyWfOAPpXzb8X/wDgoz+yP8IoJJJvihZ+LNUFtFNBp3hQf2y0qPIU4njkFojpiR3SSdH2AcfP HvAPnT4gft7/ABN/ah8K+Ifh9+zn+x34p8UaJrs8OiWPibVYnntbS6cQO/2mGGM2sDxmQFHe92J+ 5nk+T5K8s8E/8E3/ANtT4gGK68aar4W+HWmvewW1zbPfpc3sVqgQvPbfYvOR/wDWSbI3uoy7x/P5 aeWa4q+X0q1Xnkrs7MJmE8JScUz3XwD/AMEePhDYSx6p8W/ij4u8Z3yagk7raomj2dxbJ5f7idC8 853+W4eSOeP5JECeXs3n6a+G/wCxr+zB8KhbTeCfgb4Xtrmzvo9Utry+tP7Vvre5QJseG7vTJPDs 2IybHTY43/fd89UKajokc86zrdT3KH/VLUlWZhRQB8AfGX/lMb8Cv+xBvP8A0R4gr7/oAKKACigA ooAKKACigAooAKKACk3CgBN6/wB4U6gBNwr5f+Jn/BQ/9kT4ZNcxal8ZdI8QXQsmvbW18OB9ZNxw +IUnt0e1SZ3TGyaaPZmN3KI6mgDwfUv+Cqvif4htqtt+yt+yZ4+8d/YbCPzdRuLeSQadeyed5H2i 0sY7rzIf3e//AF8DvskT5Nm+lvNA/wCCwHxuGpW99rHgX4N2X2AacbS3uoD9s83z/PmguYBqN1BO g2Jv86DZ+78v5970AXov+CS2n+M9Vn179ob9qD4jfEXVFhgttOvoylnPbQI8jvG8l3JfPImX+QJ5 eze/39/yfRXwz/Yl/ZX+Eep/294G+CGhwah51tc293frPq01pPA7vDJA988j2siu+/fHsJ2J3jTA B7ptb5vkb5/vVYUA9aiEZLVg3GpogCjtTs05zsTCPKOoqigooA+APjL/AMpjfgV/2IN5/wCiPEFf f9ABRQAUUAFFABRQAUUAFJuFACb1/vCnUAM3p/fr568dft5fsgfD2WzOvftBeGLpdQWRIf7Clk8Q bCmzf5h05JzB/rEx5mzfzszsegD54l/4K2af421O20L9nj9l74j/ABE1NIZrvUrWQJaz2sKPGgkS OxS+eRP3mx3fy9n7v7++qul+IP8AgsF8aF0iXTdF8BfBjTVsHvVuJbe1P2zf5Plwz28/9o3UE6Av +7MEGzEiSfOI0oAwX/4J8eNfij8SbfSf21P2oPGfiKfWLea68OpprCOwfUJUjnvra1nu/Mjt3j8m f/Qo7WDz4IYZ4+La7gtfobTf2IP2X/gR4IuLrwp+zdpfjvWLn+zNO2a/b/23Ld3TzJax3M7zJOlj CHn8+6ktYAiQpJJ5D+THHQB6Jqv7QGlfD3wn461/4z6RZ+G9V+H+jw67rNjYakmo21zZT+elh9hu 5o7Xz3nmtbi2SGZIJPPjdNnlvBPPQ0349fEDUdE0DUbLwl8ONZl8cav/AGP4RuvDnxBn1XSbyeO2 vrq6a6vv7KQwIkOnTonkw3W+fEbiHlwAekfDLxofiH4Tj8SS6a2m3UF/qWj31qs/2iOK9sL2exux DMUTzIftFrN5cjJG7x+WzxxvmNO0oASloAKSgBaKACigD4A+Mv8AymN+BX/Yg3n/AKI8QV9/0AFF ABRQAUUAFFABRQBHvTbv3rsrwz4n/tk/st/CjzovHXxx8OW91Z30mlXNhp92dVvLe6QP5iT2toJp 49hjkVi8exH+RzvKCgD518Q/8Fbfh3q+sjwd+z/8GfHvxL8STX00Ftaw2v2FL62hSR3ubRI/PupO I/M8t4Efy9+/ZsrGh+I//BWT49NZjwT8KvDnwc0HUb+ae01XWIU+22lrEZkjhvob555/m+QeYlij u6JImyN3oAlj/wCCaPxx+Lotbz9rH9r3xP4jt7u+udT1Lw5ozTSWcV0/nLC9lJdP5EAVZRwlkgRH eBNifvK96+HH/BPP9kT4bG3nsfg3p+uX0dhHp81z4jeTWxdY2fvpILrfapP+7zvhjj27nRNiPsoA +gNM0bStC0yy0TQ9MtrDTdOtktbSxt4RBDbwoAscMaJ8iIEG0IPROK2E+5QB5L8YPN8b614Y+Eej uJ79vEGjeKdYliG/+x9L02/XUYJ50zj/AEq606KyjTekj+bcTxpIllcIOp+J/jS/+HvgfU/Fum+G NW8RXNl5CQ6ZplpPdTyyTTRwo7JawzT+Qhk3zNDDNIkMcjpHI6BHAPNvhn8QfDdhbeLPFmo6H8Sd U1iG30y517xJe/DnXLB9SeaaeOGy0vT5Lc3f2W0+ciCGORIUuvOkmmnmu53ueFPCGifFTxV498Ve I/AvnfD3xjY6LapovijQntf7V1Gyku/tWoT6Xexh03JJpdskk8aTP/ZafJ5EdrJIAeu6RpGlaFpV joejaZaadpumwLbWdpbQLDDbQouxI40T5ERF+UKBgY4rUoAKKACigAooAKKAPz++Mh2f8FjPgXI3 3V8AXuf+/HiKv0BoAKKACsrV7Oe+028sLPWLvSpri3lgivLRIWmtnkXAmjE8ckZkQ/OBIjp/fRxx QB8Kf8O5P2qP+km3xU/741X/AOXNH/DuT9qj/pJt8VP++NV/+XNAB/w7k/ao/wCkm3xU/wC+NV/+ XNH/AA7k/ao/6SbfFT/vjVf/AJc0AH/DuT9qj/pJt8VP++NV/wDlzTW/4JyftUD/AJyZ/FNv+2eq /wDy5oA5/wAX/wDBK341/EPS4dC+IH7evjLxPpyTJdrZ6xpV7qEKTqjgOkc+qum/Dv8AP/tn1rjn /wCCHG9t/wDw09s/7kn/AO+VAHfeF/8AgmB8ePBOhWnhjwV/wUF8e6Bo1gHFtp2mabe2lrCGd3k2 QR6qI/nd3c+7kmtT/h3J+1J/0kw+Kif8A1L/AOXNAC/8O4/2pf8ApJn8VP8AvzqX/wAuaP8Ah3H+ 1L/0kz+Kn/fnUv8A5c0AH/DuP9qX/pJn8VP+/Opf/Lmj/h3H+1L/ANJM/ip/351L/wCXNAFGz/4J p/tF2Fxf3Wn/APBRr4lW1xqdwLq/mis9RVrufyUhEk2NY+d/Jggj3Pn5I40/gAq9/wAO4/2pf+km fxU/786l/wDLmgA/4dx/tS/9JM/ip/351L/5c0f8O4/2pf8ApJn8VP8AvzqX/wAuaAD/AIdx/tS/ 9JM/ip/351L/AOXNH/DuP9qX/pJn8VP+/Opf/LmgA/4dx/tS/wDSTP4qf9+dS/8AlzR/w7j/AGpf +kmfxU/786l/8uaAD/h3H+1L/wBJM/ip/wB+dS/+XNH/AA7j/al/6SZ/FT/vzqX/AMuaAD/h3H+1 L/0kz+Kn/fnUv/lzR/w7j/al/wCkmfxU/wC/Opf/AC5oAP8Ah3H+1L/0kz+Kn/fnUv8A5c0f8O4/ 2pf+kmfxU/786l/8uaAN34Kf8E8viB8Nv2hPC37QHxE/ap174k6l4XiubaOLWtIneaSGe2ng8tLq fUZnjRDdO+Nvr619vwpsiVPSgCSigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKA CigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAoo AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACi gAooAKKACigAooAKKACigAooAKKAP//Z ------=_NextPart_000_0000_01CAEE31.3E0A96D0 Content-Type: image/jpeg Content-Transfer-Encoding: base64 Content-Location: file:///C:/Users/User/Desktop/Pagina/Quizzes/ForcaMov2/sqrsrc9z4YoR/1K0N0S001.JPG /9j/4AAQSkZJRgABAQEASABIAAD//gAMQXBwbGVNYXJrCv/bAIQAAwICAgICAwICAgMDAwMEBgQE BAQEBwUGBQYJCAkJCAgICAkKDQsJCg0KCAgMEAwNDg4PDw8JCxAREA4RDQ4PDgEDAwMEAwQHBAQH DgoICg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O/8QB ogAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJ CgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJ ChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeI iYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq 8fLz9PX29/j5+hEAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMz UvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3 eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna 4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgAiAGYAwEhAAIRAQMRAf/aAAwDAQACEQMRAD8A/VOigAoo AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACi gAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK KACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigA ooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKA CigAooAKKACvmnxb+2Lo/hP476Z+zvd/BX4l3njXV4Z73R7e0/sHyNTs4/tR+0xzyarGkaOllcPs m8t/kH7tHxQB3Pwt/aM8DfFTxV4i+H9la6zoXjLwksH9ueG9Yt0gvLJJv9XIHjkkhnQ8fPDI4+dP 76Z9doAKKACigAooAKKACigAooAKKACigAooAgkkjhiaed1RU+dmb+GsLwR428LfEXwvYeOPBer2 +qaLqyedZ3tucxzJv2ZH/fGKAOkooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACvz p/aEt/E1x/wVi+DMHg/WdK0vW/8AhBLn7Ldanpsmo20P7vX9/mQJPbvJ8m//AJbJ/f8An+5QB0Xw SvLf4O/t9+KfA3xts7bV/it8VdEXVNH8Xaf+7srrTIVk/wBCSx2GSx2R6a/3559/2VPn+5X3pQAU UAFFABRQAUUAFFABRQAUUAFFABRQB5L8b/iF8P8Awhoth4d8deOtB8NWPiq8+wTXes6tBp0JtUQy XaeZJInzvGnkDyzvjedH7V8yf8E5PiD4a8N+Lvip+ytoXjPR/EGm+Ddam1bwhe6ZqUF9Bc6DcvvC RzR8SeTJJH5n39kk7p2oA+9KKACigBaKACigAooAKKACigAooAKKACigAooAKKACigBM0ZHrQAtf NfjH9jbQ/F/xy0/9om/+NfxHtPGWkwz2WkXNr/Yfk6bZSG6/0WOF9LdHREu50Dz+Y+H+d34oA7Xw H+z14S8GeOr34ratrOu+LPHN9Yppb+INekgkuYbNXd/IgjtYIIIEy/8ABClev0AFFABRQAmR6ijI oAWigAooAKKACigAooAKKAPLtI8F/Emz+LWseP8AXfiLpepeF7+wjsLHw+nh2S3n05Ud33pe/bX8 x5Hk/efufn8uDZs2fP5l8S/2ZviZ4o/aS0T9orwZ8ZNA8M6noOnvotrZP4Nnv/tti53yQ30/9pR+ fiSSR02JBs4/ub6i1UOQ+mfxo/Gj96LkD8aPxotUDkJKZT5VJWKJKKoQUUAFFABRQAUUAFFABRQA UUAFFABSHpQBTlkSGF55fuRjefWvkk/8FJ/g30/4Q/xow97W0/8AkqvPx2PhgVeXXmPsOEOCM04w nVWAs/Y2vfzv69g/4eWfCb/oTvF3/gNa/wDyTR/w8s+E3/QneLv/AAGtf/kmvK/1jo/0v+Cfc/8A ED+IOy+9/wCQf8PLPhN/0J3i7/wGtf8A5Jo/4eWfCb/oTvF3/gNa/wDyTR/rHR/pf8EP+IH8Qdl9 7/yD/h5Z8Jv+hO8Xf+A1r/8AJNH/AA8s+E3/AEJ3i7/wGtf/AJJo/wBY6P8AS/4If8QP4g7L73/k H/Dyz4Tf9Cd4u/8AAa1/+SaP+Hlnwl7+DvF3/gNa/wDyTR/rHR/pf8EH4H8QW2X3v/I+gPhF8TNE +LvgbTfiJoFleWthqfnxww3aosyGGZ4XD+W7p99H/jrulXGB6V9BCsq9pLrE/H8dhXl+LnhZb0m4 P1WhYpa1OYKKACigAooAKKAEJA6mm+bH/fH507N7AeV6r+0n+z3ompXWh638dfh9YajZXL2t5aXf iaxgmt50cJJHJG829HR/4KT/AIaq/Zh/6OK+GX/hWab/APH66/7OxlrqEv8AwFmftQ/4ap/Zh/6O K+GX/hW6b/8AH6P+Gqf2Yf8Ao4r4Zf8AhW6b/wDH6n+zsb/JL/wF/wCRXtEH/DVP7MP/AEcV8Mv/ AArdN/8Aj9H/AA1T+zD/ANHFfDL/AMK3Tf8A4/R/Z2N/kl/4C/8AIPaIueHf2gvgb4x1238PeDfj H4H17WL3f9m07TfEFld3UuxN7+XDHIXf5Edz7JXpFctbC1KM7STXqWSUUCCigAooAKxNZ1nStB0q 91zV9TtdO0zToWuby7uJkghtoUTe8kjv8iIifOXz2oAzfBXxA8C/EvS5tb+H/jPQvE2m29y9rNda PqMGpQpPsRyjyQO6b9kiPs/20q1qPi3w1pGvaR4V1XxPpdnq+umf+y9OuLyNLrUPITzJvs8D4efy 0+d9n3B1oA6OigAooAKKACigApKAM+9CfZ5iV/5ZHv7V+GtfFcYN2oWe/N+h/Tf0bqfLUzN03v7L 8faf5DKK+E97uf1n7gUUe93HeAUUe93C8Aoo97uJuFj9Wf2GCF/Zm8HAj70uof8ApZPXvkLeYS5F fsWWp/VKMu8Ef5qcYpf6xZhbrWqv7qjLNFdx84FFABRQAUUAFFAHwX/wWP8A+TafC/8A2Pdl/wCm /Ua/HOv2bgHDRxGVPmin78unkjzMTdTAgjrRgnpX331eP8PlX3GAlLR9Wj5fcHMwIIoAJo9hH+Hy r7irn0//AME0f+T2/hx9dX/9NN9X7U+N/GPiPwq9odB+FPivxmLneZf7EudKhNpt2bN/9o31r9/f /Bv+4+/Z8m/8Q8QF7HN4pLTkX/pUj0cN8Bu6NeTXunWt7e6Jd6VNPbxzy2l08LTWzyLkwyeRJJGZ E5Q7HdP7jv1rnNO8f+Lr/wAZN4auvgp4ysNNW5miHiG4vNDeweNN+yby4dRe72SbAE/cb/3ib0T5 9nxRua/iTWNS0fQbrWrDwlqviO7t5IxHpemSWkd1cFpET9293PBANg+f55E4Tj5/kqv4S8Ta14k0 qbUtX+HHiDwpcx3DIljrM+mzXEiBE/fIbG7uo9nz7Pv7/kk+T7m8Ar+N/GXiTwm9n/YPwp8VeMxc 7/O/sK50qA2m0ps3/wBo31r9/f8Awb/uPv2fJv0PDesalrGg2utX/hLVfDl3cSSCTS9TktJLq3Ky On7x7SeeA7x8/wAkj8Pz8/yUAcz4m+I/jDw5rt3pGjfADx34ktYHTy9T0y98Ox2tyXRH+RLrVYJ/ k+588afc7ph6teHNbv8A4h2d5a+N/gz4h8OwWFzZ3Vunib+x7xbiZJvPjeAWF9d7Hgmggfe+zY/l un3PkAOM+Dl54tf4n+PIfilpGl2fj97HR7yZtD1GS/02Pw89zqkek2sLyQWsnnQyQao8++N97z+Y j+W8dra8F8UWkf4dfte+IWTfqui+f/Zd8w/0iw+weFtM1Gw8iT78P2W+nnuoNmPLnneaPY7u5APW /j5478ffDvwRpfiDwH4d0LVtUl8T6Fo01vrGoT2EHk3+pW1kXR4IJnL77pF6fIHeTE/l+RPwS/F7 4yaJrWrw+Ik8HX2m+C/Gmg+CdYnsbG7tZ9al1Z9K8ua2geeRNNS1TW7Xfve+N35Mn/Hj8hoA9V8b eO/FPhjV4tO0f4K+MPF9u1utw99o93okEKPvf904vdRtpC+ED8R7P3ifP98Js+G9Y1LWNBtdav8A wlqvhy7uJJBJpepyWkl1blZHT949pPPAd4+f5JH4fn5/koA5nxN8R/GHhzXbvSNG+AHjvxJawOnl 6npl74djtbkuiP8AIl1qsE/yfc+eNPud0w9em0Aef+CfHfinxPq8unax8FfGHhC3W3a4S+1i70Se F33p+6QWWo3MgfDl+Y9n7t/n+4H2fEmsalo+g3WtWHhLVfEd3byRiPS9MktI7q4LSIn7t7ueCAbB 8/zyJwnHz/JQAeG9Y1LWNBtdav8Awlqvhy7uJJBJpepyWkl1blZHT949pPPAd4+f5JH4fn5/kqt/ wmev/wDCd/8ACI/8Kp8U/wBl/wDQ0/adH/sz/U7/APV/b/t33/3P/Hr9/wD6Z/vKAOh1A/6Fc55P lHt7V+GFfFcZQSjQ/wC3v/bT+nvo3vkq5j7R9KX/ALeFLXwyUZH9VQ5pLnkwpKGoxBRsv3krhS0J RkDjdfu5WCkotGLCfNyucWfqx+wv/wAmx+FI/wDb1D/0smr6BByRX7Fgf92pf4I/kf5s8YLl4hx7 /wCn1T/0uRLRXYfOhRQAUUAFFABRQB8R/wDBVHwJ43+IX7Pvh7SPAXg3XPEl5B4ztbma10nTp7+Z IRZXyGR0gR32b3j+f1dK/Kn/AIZj/aX/AOjevib/AOEnqX/xiv1Pg7iChl2X8k5pPmlu0jhxMG5a I57xn8MfiT8ORa/8LB+H3iTwz/aG9LP+2dKutO+07NnmeX58ab9m+P8A77Stbw98CfjZ4u0W38Qe DvhB4317R70P9m1DTPD97d20wR9j+XNHGUf50dP+AV9t/rJhlRWIc1Z+aMPZvaxc/wCGX/2l/wDo 3T4of+EhqX/xil/4Zg/aU/6N2+KH/hH6l/8AGKz/ANacl/5+r7w9gznPGfwx+JHw5W1/4WD8PvEn hn+0N8dn/bOlXWnfadmzzPL8+NN+zen/AH2lavh74FfGzxbotv4h8HfCDxvr2j3of7NqGmeH727t pgj7H8uaOMo/zo6f8ArR8SYZUViOdWfmieR7H0r/AME/fgX8cPBP7XngPxH4w+DXjjRdKsf7T+0a hqXhy+tLaHfpl2ib5nj2J+8eNP8AgdftKOea/HuMczp5hmEakGmuTpr9qR6GHTUNSSivlzcKKACi gArmfFHhmy8V6LdaDqU2rW9pfOhkfTdVu9Juk2Oj/u7q0eOdP9WPuON+dh+SgDjta+B+lt8MtZ+G 3gzxFrvhyTXbiOe91631rUbjWt++HfN/aL3X2uS68iBIY5Jp5EjRII3jngj8h97Xfhj4J8R+J9N8 aa3onnapYPBsf7TPHDc+TIZrX7VBG4guvInd5oPPSTyJ3eSDy5H30AL8SPht4W+Kuh23hzxnb6rN p9vqFrqkB0/Wr7S5BdW8nmQP51lPC52SbJEy+N8cb/fjSuY1f9mr4Ta7/wAJB/aNp4pD+KNetfFO qCLxrr8Jl1O2x9lmj8u+TyPL2QbEj2IPstr8g+yweWAev0UAFFABRQAUlAFK7EhtpUj4eSMqvuSK /GL/AIUz8YD/AM0m8Z8df+JBff8Axuvk+JcFUxXsbK/xf+2n734G8R5TkFTHvMKijf2Vru23N/mI fg18YP8Aok/jP/wQX3/xFYWu+Hte8M3a6f4m0PUNKu5YvOS3v7R4ZmT7m/Y6fc+R/wDvivja2V1q Otn9x/TGX8dZDmtX2FGvFv1RFpWl6lrN/FpuiaZdX95Nv8mC1ieeabYm99iJ8/3Ed66OL4NfF+Xm L4TeMyPbQL3/AOIpUcsrVuj+4eacZ5Jk9TkxdeN3ruv8wl+DXxfi5l+E3jMD30C9/wDiK5zVdL1L Rr+XTdb0y6sLuHZ50F1E8E0O9N6b0f5/uOj0VssrUej+4Mr4zyTOKnJhK8brXdf5kuieHtf8TXba f4Z0PUNVu4ovOe3sLR5plT7m/Yifc+dP++63f+FNfGDGf+FT+M8f9gC+/wDiKdHLK1bVJ/cLMOOs iyip9Xq1op+qP0v/AGMtG1bw/wDs5eFtN1zSrzTr+KTUJHtbq3eGVA97O8e9JPn5R0aveOwr9TwS aw9JP+WJ/A/FFeOJzvG1Iu6dWbTWqacpMlorrPECigAooAKKACigBDXnvxP8Zar4U0vSdJ8L2Vrc eIvFGsQaFpEV1HI8KzyI89xO43pvS1soLu6MfmR+f9l8hJI5JI6qn8QFjwj8OPDPgOS4vdOsPtWt 6uUfXNeu0jfUtYmTf5cl3OiJ5mze/lx/JDAhEcCRxoiJzPxS+Fpj/tL4n/C/w+LP4hWvk6gP7Puv 7P8A+En+zeX/AMS/Uf3iQXHnQRyWUM90k/2L7T58IR0rVVXzbgd74M8UaJ4x8LaN4v8ADt99r0rX rCDU7C48h4/PtpkSSGTY/wA6ZR0++M1gfE3xnqvhLS9J0nwxZ21x4i8V6xBoWkRXUcjwrPIrzzzv 86eYlrZQXd0Y/Mj8/wCy+QkkckkdZpP2moFjwj8OPDPgOS4vtOsPtWt6uUfXNeu0jfUtYmTfsku5 0RPM2b38uP5IYEIjgSONEROZ+KXwtMf9pfE74X+HxZ/EK18nUP8AiX3X9n/8JP8AZvL/AOJfqP7x ILjzoI5LKGe6Sf7F9p8+HY6VartytcDvfBnijRPGfhbRvFnh2++16Vr1hBqdhceQ8fnW0yJJDJsf 50yjofnGa6MVhPWYC0UwCigAooAKKACigAooAKKACigAooAKKAEwPSo/IiGf3SflSaT3Gm47HH/E nxRB4E8B+IvGb6eLptF0y71D7PuEfneTC77N/wDBu2V5J+yt8LNL07wpb/GTxJeza5408eWUWp6p ql2mWSOZEmS2gT/ljCnyJsT7+xP4EjROOtSVSrH/AKd+8e/g8ZLB5VXqJu9SUYX/ALvxfjLl+7zO t+OnwL8N/GPw6ou5G0nWtIY3mja3ZJ5dzp1z/fR+6fIm9P49iH5HSN0T9mXx3qfxL+CfhjxrryD+ 0r22eG5fCfvZYZHgd/3aIib3gL7MfJv2UckYYrb+JH/0n/8AaLniJ4zJeZyf7ucYx/7fjKXf+7+I ftNeO9T+GnwT8T+NdBQf2lZWyQ2z4T91LNIkCP8AvEdH2POH2Y+fZspfgb8DvDfwd8OsLSRtW1nV 2F5rOt3qeZc6jc/33fsnzvsT+De/33eR3OSM8Vt/Dj/6V/8AshDETweTcyk/3k5Rl/25GMu/978D kf2qfhZp2o+FLj4yeG7ybQ/GfgOyl1LS9UtEwzxwo8z206f8toX+dNj/AHN7/wADyI/rnw28UW/j zwD4d8Zpp4tW1zTLTUPs5cSGHzoUcpv/AI9u+ijSVOpL/p57wsZjJYzKqFRt3pylC/8Ad+K3ylzf f5HZJHHGMIgA9qfXafOt31CigAooAKKACigAooAQ15r8XfDOuanZ+HPFPhWx+3654K8Qw67Z6f5q ol9GYZ7K+hBfYnnPY3195G+SOP7V5HmSCMPVU/iA6Twx4m0rxhpFn4i0G/NxY3IfY7xPBIkiN5ck M0cgSSCeORJEkhkRHjdHSREdDXMfFz4hnwNoiaN4cutLm8deIybPwnpV2+97y+d0h894I3E8lla+ fHPdPB88Fqkj9qIx964zofh74G0/4c+A/Dvw+0i8uZ7Hwvpdro1nLdNG07wQQpDE0mxETfsQZ+Ss D4t+Gdc1Sy8OeKfC1l9v13wR4hh12z0/zVRL+Mwz2V9CC+xPOexvr7yN8kcf2ryPMkEYeiM/3gHS +GPE2k+MNIs/EOg35uLG5D7HeJ4JEkRvLkhmjkCSQTxyJIkkMiI8bo6SIjoa5j4ufEM+BtETRfDl 1pc3jvxITZ+E9Ku33veXrukPnvBG4nksrXz457p4PngtUkftRGlaVwOh+Hngaw+HHgPw78PtIu7m ax8L6XbaNZzXLI8zwW0KQxtJsRE37EGcJXWCol8QC0UxBRQAUUAFFABRQAUUAFFABRQAUUAFFABS HpQBx/xI8I/8J14C8Q+C2u/sra5pl3p4uPLD+T50Tpv2fx7d9eQ/ss/FHT7/AMK2/wAGvFFlc6F4 08B2UOmarpV8+JXjhRIUuYX/AOW0L/I+9Pub0/geN3461T2dSL/5+e6e9gsL9dyqvSWrpyjK3934 fwly/ffodb8cfjh4b+D/AIdX7RE+ra1rDGz0bRLI+Zc6jc/3ETsnzpvf+Den33eNHP2Z/h/rHww+ CXhjwTr6uNSsrZ5rtfk/dTTSPO6fu3dH2POU3/x7N9HMp4q//PuP/pX/AOyVUpPBZM4SVnUnGUf+ 3Iyj/wC3eWwftMfD/WPif8EvE/gnQFc6le2yTWi/J+9mhkSdE/eOiJveAJv/AIN++j4HfHDw38YP DrfZ4n0nWtHYWes6JfHy7nTrn+46d0+R9j/x7H+46SIhzKGKv/z8j/6T/wDtDp0njcmUIq7pzlKX /b8Yx/8AbfPc5H9qb4o6fY+Fbj4N+GLK513xn48sptM0rSrF8ypHMjwvczP/AMsYU+d97/f2P/Ak jp6/8N/CI8C+AfD3gtbw3LaHplrp5uCnlmbyURN+z+Dfsoo1PaVJf3PdFjMN9SyqhSe9SUpW/u/D +Mub7r9TsB0pa7D58KKACigAooAKKACigD5N/aK8Af8ABQXxR8Rf7S/Zz+OHgbwp4OFpDGunapps f2lJ8v50jyPZXfmZz99Hg4ITy8p503mP/Cnf+Cx//R1/ws/8F0H/AMoqAOD8TfsX/wDBTTxTrlx4 im/aU8A6XrGobBqGoeHL+78P3WpbE8uP7dPpulQPdeWibE87zPL+fy9m960PBP7Kf/BUb4fC9n8L ftF/C+K+1TZ9v1S7t/7S1PUfL3+T9rvrrRpLq68tHkSPzpH8tPkTYlbVKsXT9lbUDrP+FOf8Fjv+ jr/hZ/4LoP8A5RUf8Kc/4LHf9HX/AAs/8F0H/wAoqxA4PxN+xf8A8FNPFOuXHiGb9pTwDpesahsG oah4cv7vw/dalsTy4/t0+m6VA915aJsTzvM8v5/L2b3rQ8E/sp/8FRvh8L2fwt+0X8L4r7VNn2/V Lu3/ALS1PUfL3+T9rvrrRpLq68tHkSPzpH8tPkTYlbVKsXT9lbUDrP8AhTv/AAWP/wCjr/hZ/wCC 6D/5RUf8Kd/4LH/9HX/Cz/wXQf8AyirEA/4U7/wWP/6Ov+Fn/gug/wDlFR/wp3/gsf8A9HX/AAs/ 8F0H/wAoqAD/AIU7/wAFj/8Ao6/4Wf8Agug/+UVH/Cnf+Cx//R1/ws/8F0H/AMoqAD/hTv8AwWP/ AOjr/hZ/4LoP/lFR/wAKd/4LH/8AR1/ws/8ABdB/8oqAD/hTv/BY/wD6Ov8AhZ/4LoP/AJRUf8Kd /wCCx/8A0df8LP8AwXQf/KKgA/4U7/wWP/6Ov+Fn/gug/wDlFR/wp3/gsf8A9HX/AAs/8F0H/wAo qAD/AIU7/wAFj/8Ao6/4Wf8Agug/+UVH/Cnf+Cx//R1/ws/8F0H/AMoqAD/hTv8AwWP/AOjr/hZ/ 4LoP/lFR/wAKd/4LH/8AR1/ws/8ABdB/8oqAD/hTv/BY/wD6Ov8AhZ/4LoP/AJRUf8Kd/wCCx/8A 0df8LP8AwXQf/KKgA/4U7/wWP/6Ov+Fn/gug/wDlFR/wp3/gsf8A9HX/AAs/8F0H/wAoqAD/AIU7 /wAFj/8Ao6/4Wf8Agug/+UVH/Cnf+Cx//R1/ws/8F0H/AMoqAD/hTv8AwWP/AOjr/hZ/4LoP/lFR /wAKd/4LHf8AR1/ws/8ABdB/8oqAG/8ACn/+Cw7DcP2q/hZgf9Q2D/5RV5z8Qv2If+CiXxUu7bW/ iH8bvhPquo2aSRLcLbG1fy/7jvBpMfmJ1+/9ze/996itho4qnyzPSyjNcVlWI+vYDSXZ/wCTKfgn 9gb9v74ca9F4q8GfF34T2Gq28TwwXbLJdvCX4kKCfSpNj9U3p8+x3T+N69SHwi/4LEIm5v2qvhYw P/UNg/8AlFU0cLHC07QLznOcVnFf67j9Zdlp+QH4Rf8ABYhk3D9qv4WKP+wbB/8AKKvLfG37A/7f 3xH16XxT4z+Lvwnv9VuIkhnu1WW1eYpxGXEGlR736Jvf59iIn8CUVsLHFU7THk2c4rJ6/wBdwGku z1/MufDz9iP/AIKJ/Cu7udb+Hfxu+E+lahepHC1w1ubt/L+8URp9Kk8tOn3Pv7E/uJj0b/hTv/BY hhn/AIau+FmP+wbB/wDKKqo4aGEp2gZ5pmmKzev9dxfxdv8AgDv+FO/8Fjv+jr/hZ/4LoP8A5RUf 8Kd/4LH/APR1/wALP/BdB/8AKKrPNNLwn8KP+Cslh4q0e78V/tO/DC50WG/tW1KH+yEuPOtvMXzk EcelQO/yb/kSeD/rpH9+vu6gAooAKKACigAooAKKAI6Ki1/fAkoqwI6Ki1/fAkoqwCigAooAKKAC igAooAKKACigAooAKKACigApKAICGVODz6mmor/xMD+FKrGU17pD9q58y0iI4lxlZgPwpR5u3l8n 1Bp0oOC94m1aE+beIHzMffwfU0Kr4+aYH8KKsHNe67DtVnPm2iNIZfu7R+tTLu8vlhmlTjKCtIf7 zn5qnwk1FMsKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACi gAooAKSgAxS0AFJgUAGB6UUALRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABR QAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAF FABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAf/9k= ------=_NextPart_000_0000_01CAEE31.3E0A96D0 Content-Type: image/jpeg Content-Transfer-Encoding: base64 Content-Location: file:///C:/Users/User/Desktop/Pagina/Quizzes/ForcaMov2/sqrsrc9z4YoR/1K0N0T002.JPG /9j/4AAQSkZJRgABAQEASABIAAD//gAMQXBwbGVNYXJrCv/bAIQAAwICAgICAwICAgMDAwMEBgQE BAQEBwUGBQYJCAkJCAgICAkKDQsJCg0KCAgMEAwNDg4PDw8JCxAREA4RDQ4PDgEDAwMEAwQHBAQH DgoICg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O/8QB ogAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJ CgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJ ChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeI iYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq 8fLz9PX29/j5+hEAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMz UvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3 eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna 4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgAtgEaAwEhAAIRAQMRAf/aAAwDAQACEQMRAD8A/VOigAoo AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACi gAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK KACigAooAKKACigAooAKKACigAooA4r4jeOX8E6Jb3VppH9q6vq1/baLoulrN5D3l9O+1AXCyOkE aCS5nkjjkeG1trify38spSaZ488N2d/pngbxH8R/C8/jO532RsYLqO1mu72G1gubrybF55Jo9kE8 M/k75Hjhnjd3IcOQDD8dfF3TYfhHL8SfhZr+geJm1a5tdF8OahbXSX+ly6ne30emWjTyW8nz2qXs 8fnmNzIkaTbMuAh1Nb+IOl3+r6x8Pvh5448GXnxF0eCO/fw/e6ikkyQb4HxdQQv59tHIkyIk+yTy /Pjk8uf/AFMgBqeAPGmm/EPwjpfjXR7e7t7fUrcO9rfIkd3ZT8pPaXSI7iG5gmSSGaP/AJZyRuh5 Q1c1Hxd4Y0jXtI8Lap4m0uy1nXzcf2Tp1xeRx3V/5CeZN9nhch5hGnzvsHyDGaAN6igAooAKKACi gAooAKKACigAooAKKACigAooAKKACigAooA+Uf2j/gHbeKfiBqU+hfCjS9Zg+MWgWvg3xXqraXBN cWCQanZMLqKbZ+4nGmyarP58++Pz9F0dB+8WCCfuvFvx28P/AAYu9V8Bw/BzxTBYeFNBs73R49Ig 0aC21a1M9rZJZaPbyXsbzzxyTww/ZkjQgmBEy91ZJOAXPjBd3MGn/DH4s6tpN7pOmeC/EsGua/bX csD3GnWl1pl9pcjzvHI8AS1k1RJ7qTzvLjgtbqQSSbED+L+MPg9r80Pxj0/Tf2V7q+g8b/FTwxrs kcK+GkTXtFsptLmv2m8y+Tejzadqcghn2M76qjFMyXXkgHbeGfBPxK139onVtV1v4Z6r4f8ADOne P7rxxZ69d32mzpqOzwza+HILZIILuSePzvMvbrzJETZHawI6b538jU+Gui+IfBfxA8VeLPFfhA+D fBGjHxJePeeI77SLqK3+06n9tkvNKvYD9pgsrpY7i9votQYeTMbKOD93A+ADsv2eNJ1jTvhdbXOr aXd6bL4g1fXPFCWF9C8F3ZQarq13qcFtdROPkuUhvUSZOdkiSIHcDeflL9p74/eGND/4KSfs4+Bp rcXf/CMm9trubT7qOeeG91+H7BBBPAdnkeXttZ2+cuYbneE+5vAP0BooAKKACigAooAKKACigAoo AKKACigAooAKKACigAooAKKACvDvij8GPil8QPE+qeIdO+Lel6LBaWES+DIv+Edu55/DmqB0afUt 6alHHezvH58OySEIIX8nDwzX8N8AeuaSNai02zh1u8s7vUkgRLq4tbZ7SGaYL+8kSF5JGjQuchDI 5QHBdsZpdI0jStC0qx0PRtMtNO03TYFtrO0toFhhtoUXYkcaJ8iIi/KFAwMcUAalZWraVpus20dp q2m2l9BHc290kdxAk6LPBMk0EgD/AMaTRxyI/VHRHGCKANWvxF/ab+CvxG/aA+LNv8WPEngbxR4P 8UfFnUPG13oWgXuj4vZdI8O6LaPpUZ07zHnjvbnyJoZAX++Ukij2bPMAP1w+A3xi0P4/fCHwl8X/ AA7H5Fp4nsFuXtSXkFpdI/l3Vt5kkce/yZ45o9+wB9m9PkIr0qgAooAKKACigAooAKKACigAooAK KACigAooAKKACigAooAKKACigAooAK+U/wBof/k+z9kn6+Pv/TNDQB9WUUAFFABRQAUUAFFABRQA UUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABXyn+0P/AMn2fsk/Xx9/6ZoaAPqyigAooAKKACig AooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK+U/2h/+T7P2Sfr4+/8ATNDQB9WUUAFF ABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABXyn+0P8A8n2fsk/Xx9/6ZoaA PqyuW8ZfEDwj8PdJh1jxl4gtdLt7q5SytBN889/dMjslrawJmS6upPLfZBCjySHhEc0AcWfCfxG+ KbG8+IWpan4H0E8Q+GfDuumG9u4z86Pqmq2qRz2syHy/9G06cRo8c2+6voZwkdrT/wBnD4EafM+p T/C3QNY1aW2ntbnWtdtv7c1a7gmieCSO41G+M93cI8EjwbJJHHk/uf8AVgJQBH/wyd+y1/0bT8K/ /CN0v/4xXmSeCf2N7251ybw/+yT4P1zQ/DEt3a6vrum+AtKuLO2ubX/XwpHsF1duh3ofssE43pJH 99NlAHZfCz4P/sueKfDHg/4w+A/2d/AOkf2tYaf4m0ef/hEdLtL2082NLm3ffHGfLmTfHyj/ACOO HPWvcqACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAr5T/aH/5Ps/ZJ+vj7/wBM0NAH 1ZXkPwtB+I/ii8+ON85lsVF7oHgkqdinRWktvtV6SOJ/tt1YpNDMHeN7KHT3jEbzXHmAHy18SPh5 8NbL/govdWUX7MGk/EKDVfhE2t3ui2Wk6H++1STXXEmpzJqU1vA8xH7t5t7zHzO4349w/YXtpLf4 U+IJX1aTY/jjXlh8NtLv/wCEPhS68uPQ8dENqkY+RP3f7z93vj2OQD6Tr5V/ZT8Q6D8C/hLYfBD4 zeL7PTPG+jeINdtgmqslnc+It9/Pepe2MLnfdI8F1C/7nzNr5j++hSgD6Q8OWek6ZoGlaboWiR6L p9tZww2mmx2qWq2UCphIEhT5IwigJsT7uMVtUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAU UAFFABXyn+0P/wAn2fsk/Xx9/wCmaGgD0b9py7utS8C6f8KbLSrm/m+LWsQ+BpPJaGP7Np9zDPNq 1zvkkQJJDpdpqLxn95++WH93JylezUAeB6t+y1/aPxkvPjxYfHn4k6X4sutJfw/FNbQ+HXhtdIa6 N0LKOOfSZAY0kPDvvm4+eR67v4S/B/wl8GND1LSvDE19cTa7q9z4g1vUL6VZLnU9Uudn2i6m2IkY eTanyRpGg/gRKAPQaKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAK+U/2h/wDk +z9kn6+Pv/TNDQB0viDwafil+2F4S8URxBdL+B2gX8/262vA32nW9cjEH2KWPyCg8ixg+0unnJJ/ xMbF9mx/n9p0Hxd4a8S6hrmmaDrFveXXh2/GmanFF960ufJjm8t/fZNG3/A6AN6igAooAKKACigA ooAKKACigAooAKKACigAooAKKACigAooAKKACigAr5T/AGh/+T7P2Sfr4+/9M0NAHafCXxRa6N8I 9e+NV8ovLzxzreoeJ7GQSJA2t208v2Xw55aPhIHn0uHR4EQhHzgzDzjMa8h8L+KtY+C/7RXhzXvG Hwz8S+BvD3xbtoPC+vX+u3WhiG88VQpJNY3QNhqM+JLmP7VA+9BvKWnvgA+1qKACigAooAKKACig AooAKKACigAooAKKACigAooAKKACigAooAKKACvgf/goZq2p2P7Q/wCzHY6Hqd3pep+J7nxV4Us9 UtJ3gn0qfVrWy0tL+MoQ++2e9E+wOm/yAm9M70APsPXfhL8K/FnhnTfBfin4aeFNY8PaN5Q0zStQ 0W1urO0CJ5MXkwSR+XFsjzGmwDCcDijxl8IPhN8R009PiF8MPCfiYaQjpYLrOi2uo/Y0fZvWETRv 5ediZCY+4noKAOuhggtYlggjSKGNdqoq7FVanoAKKACigAooAKKACigArgfjR4z8ZfD34ZeIPHPg H4cXvjvXdHt0ubbw7a3v2Sa+TzI/PEb+XJl0h8xwiI7yFNiDe4oA8i8K/wDBQf8AZj1fXLbwV438 War8NPF87SNceHvHej3Xh+60/wCR5EF1PKhtIN8ISSP9/wDOJIwPnfZX0PpGr6VrulWOuaNqdpqO m6lAtzZ3dtOs0NzC670kjdPkdHX5gwODnigDUooAKKACigAooAKKACigArzn41fAf4V/tDeFrXwb 8XfC/wDwkOjWN+mpw2v2+6s9t0iPGj77aSN/uTScZx89AHjP/Drn9hf/AKIb/wCXNrn/AMnUf8Ou f2F/+iG/+XNrn/ydQAf8Ouf2F/8Aohv/AJc2uf8AydXz98Zv2Ef2VvC37Vn7PHw10D4Ui28O+Oh4 u/t+x/tzVJPthstNjntP3j3Rkj2SPu/dum/OHyKAPoH/AIdc/sL/APRDf/Lm1z/5Oo/4dc/sL/8A RDf/AC5tc/8Ak6gA/wCHXP7C/wD0Q3/y5tc/+TqP+HXP7C//AEQ3/wAubXP/AJOoAP8Ah1z+wv8A 9EN/8ubXP/k6j/h1z+wv/wBEN/8ALm1z/wCTqAD/AIdc/sL/APRDf/Lm1z/5Oo/4dc/sL/8ARDf/ AC5tc/8Ak6gA/wCHXP7C/wD0Q3/y5tc/+TqP+HXP7C//AEQ3/wAubXP/AJOoAP8Ah1z+wv8A9EN/ 8ubXP/k6j/h1z+wv/wBEN/8ALm1z/wCTqAD/AIdc/sL/APRDf/Lm1z/5Oo/4dc/sL/8ARDf/AC5t c/8Ak6gA/wCHXP7C/wD0Q3/y5tc/+Tq8z+PX/BN34I6N4Rsk/Z5/ZZ0HxH4r1HV7Wwkk13xlrlpp +lWTl/tF7OiXySTomwJ5cJ8z99vCSeWUcA4HwV/wRc8JXGoya38VPitdC3v7Z5W0Dwhp/wBkh026 d0fybe9vpbqSe2j/AHkaeZGsjjY7uDvR/rD4XfsG/sqfBzx1pvxI+G3wrOj+JdH877HfDXtUujF5 sMkMmI57p42zHJInzJ39aAPoaigAooAKKACigAooAKKACigAooAK+U/2h/8Ak+z9kn6+Pv8A0zQ0 AfVlFABRQAUUAFFABRQAUUAFFABRQAUUAYGmeKdC1nW9X8OadqH2u/0EwrqKpE+y2eZfMjhaXGzz /L8uR4d3mIk0DuiJPCXNN8T6Lquuax4Ys74NquiCB7+0kheB0SZN8E6BwPMgk2SIkyb4/Mgnj3+Z BIiAG/RQAUUAFFABRQAUUAFFABRQAV8p/tD/APJ9n7JP18ff+maGgD6sooAKKACigAooAKKACigA ooAKKAMrV7Oe+028sLPWLvSpri3lgivLRIWmtnkXAmjE8ckZkQ/OBIjp/fRxxXjH7E4EP7Mnw9sh 49uvElzD4X0IzQ3LWRfSDJpNlNHYYtYYykaQywugm3zlJ0d5H3pQByng7VPGtv8Asq/CTU/BWp3t vrfjy3ste1v+yptKj1vUr3UrOfV9RfR49Vxp/wBqe9eS5eGT92loL3yUR44AnQDV3vp/2afHuneM G8Tah4hMmh3HiZbD+zv7b0y88OXWqTzfYjxa/aLvR9NudgUPH5PlghHkRwD6HooAKKACigAooAKK ACigAooAK+U/2h/+T7P2Sfr4+/8ATNDQB9WUUAFFABRQAUUAFFABRQAUUAFFABWD4R8I+F/A2gWv hfwb4a0vQNHsTJ9n07TLOOytYS8jySeXBHhEDSO78f3/AFoA4pfgN4DvoNZ8N+MvDegeKvB19rE3 iKx0HXtFt9STTtTuZbma+mjebdvSaa6klRXQyQvPdKshhkhhg3rfwSZPiPJ8R9b1Rr26tbCXR9Dt o4TAmm2MxtZrzzDvzPNPPawuzvhES3gjjjjf7RJdAHa0UAFFABRQAUUAFFABRQAUUAFfPHxj+F/j 3xX+1Z+zx8S/D2h/afDngX/hLhr98biCP7Gb3TY4LU+W7iSTfIm392j7MZfFAH0PRQAUUAFFABRQ AUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFF ABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAU UAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQB//9k= ------=_NextPart_000_0000_01CAEE31.3E0A96D0 Content-Type: image/jpeg Content-Transfer-Encoding: base64 Content-Location: file:///C:/Users/User/Desktop/Pagina/Quizzes/ForcaMov2/sqrsrc9z4YoR/1K0N0T003.JPG /9j/4AAQSkZJRgABAQEASABIAAD//gAMQXBwbGVNYXJrCv/bAIQAAwICAgICAwICAgMDAwMEBgQE BAQEBwUGBQYJCAkJCAgICAkKDQsJCg0KCAgMEAwNDg4PDw8JCxAREA4RDQ4PDgEDAwMEAwQHBAQH DgoICg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4O/8QB ogAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJ CgsQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJ ChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeI iYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq 8fLz9PX29/j5+hEAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMz UvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3 eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna 4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgAagCJAwEhAAIRAQMRAf/aAAwDAQACEQMRAD8A/VOigAoo AKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKAOW8d+HdX8W+G 5fD2keKLzQXu7q1Fzd2m8TNZJcxvdwRyI6PA81uk8AnjdJIfO8xDvRK4r4PNf2Hivxf4W0DVdU1v wHov2SDStU1XUbjVLldW8y6XVrBL65d57uGAx2R3yPN5c893b+d/o32a1AMq9/av8Dafr/ibTLrw d49/s/wb4gh8Na5q6eHJzb217Olr9kWGH/j6vvPnvYIYxaQTvl0kdEgmt55q3jr4qzePvAk3grw3 aeIfCnjDxB4mtfAV3p9xPDb6rpDzwx3t/NBdWs81qlzDoL3OoQTJNIgdIUIebNvQB2XhT4uWnjTx pe+FdG8EeKTpNr/aUcXid4IBpFzdafeR2V7ao4n+0RzJdNNGomgjE32ad4XkRN59KoAKKACigAoo AKKAPgn/AIJ3atqk/wC0d+2FoU+oXjada/EaS7t7RpXaCKea/wBWSaRI87Ed1ghR2HL+THknyxX3 tQAUUAcZ8T/DPinxr4H1Xw54M8ZN4V1S+8iNNU+zyXQSDzke4j2QTwTp50Ikh8yGaGaPzPMjkSRE esv4W+DfiN4Na6sPGPjHwrqWiQWNjp2haL4a8Jnw5ZaWsHn79iSXt07745IE2b0jjS1QInzuSAcF 4h/Z8+KWtDxwth8WfC1n/wAJd490Lxxbed4Mup/sQ0z7D5Fq/wDxNU8/f/Y+m75B5fS6wg8+PyNL wz8BfFWn/GXVviX4q8faZq+jXHiG68U6Xodp4flsZLHU30210eCaS8N9IbjydNgnh2eWiO97PIU+ SBIQDV8A/B3xB4Z+KfiL4meI/FWlajdaz9sgj/srw9Ho01zay3KSWq6vNHPJ/as1lBDDa2s5SAxw tc7xI05K+u0AFFAH5/8A/BRz/k6f9jH/ALH9/wD04aHX6AUAFFABRQB+dHwbXUP2cP8Agqf8Q/hV P/aw8OfHayn8UaWH+yTma9xNevPI6FZIIY5E1uBE+/8A6nejjZMP0XoAKKACvKP+FyfEb/o074p/ +DLwj/8AL2gBP+FyfEb/AKNP+Kf/AIMvCP8A8va8w8e+Kfibp91qvxI0P4c/HHwO8Fv/AGhqj3uu +DNR0GSO3h+R7q1v9cdLW2RY3M32GaxeRHdpJt4jkQ5ibyRc/Zp/ad+K3xq13UtB8Yfs2+KfD+l6 d5CWnjRJrRNK1eN0nIvIUeb/AFM3kRmP7DPqUY8+PM5TZNJ9N0FBRQB+enxTu7j9oP8A4Ks/D74X tpV3qXhj4G6O3iLU4JmhtUtdQkhS6jvYXRxPMnnTaCnln+OJ/wB3s8x3/QugAooAKKAPz7/4KpeA Ne0DT/hv+154I0rS7jW/hDr9rPfrcWqf6RavcwPaPPMJEkeCG7jRPITP/IQkfMfzk/aPwt+JfhX4 wfDzw78TvBd39p0XxJYRahbb3jeSLeMvDN5buiTRvvjkQOdjo6djQB2dFABWZqmq6do2nXWr6xfW 9jYWML3NzdXEqQQwwopd5HduERFHL5GO+KBN21Z4rf8A7bn7LGn+KT4QuPjRoz38k0MCzW8dxPZ7 5Nmw/bo42ttg3/O+/YmH3lNj46zT/AHwR+Jur2nxgtbHRfHFw1zFdaRqt3ef29a6fNbOEMmlCR5I bF98Cb2tRGXkgR5N7oDWjptbnPRx1Os7I9QpazOkK4z4pfEvwr8H/h54i+J3jS7+zaL4bsJdQudj xpJLsGUhh8x0R5pH2RxoXG93RO4oA+Lv+CVvgDXtf0/4kfteeN9K0u31v4va/dT2C29qn+j2qXM7 3bwTGR5Egmu5HTyHx/yD43zJ8hH6CUAFFABRQBgeL/Cmh+NfCms+DPE2nm80fxBY3Om6hb+c8fnW 06NHMm9CHXejt93B9xX5+/sL/EPVf2S/i14n/YN+POsXen79Xa8+HOqajA8FvqkE7uuyB/PkjhS5 KJNDCnH2h72F3M5SMgH6Q0UAN6DNfkp/wUG/aj8UeP8A4la98GvDHiK5g8EeHp4bG9tYxsXUdUtn fz3kzHHJsjmfy9m9032kc6c7DXRhY3nqeRnWI9jh7dz48FfQH7IX7UXin9n74gaZp154huk+H+q6 mjeIbAgSRIjJ5P2qPMbujx+Ykj+T88/kJH/crvrxufH4Gu6Na9z9rlIIBpeK8ln6MndXFr83v26P iHqv7Wnxa8MfsG/AbWLvUNmrrefEbVNOgee30uCB0XZO/nxxzJbF3mmhfj7QllCjicPGEM/QLwh4 U0PwV4U0bwZ4Z082ej+H7G203T7fznk8m2gRY4U3uS7bERfvZPua36ACigAooAK+bv23/wBknTv2 uPhMvhSLU7PSPFOgztqPhzVbi2WREuNhR7Wd9hkS2n+Tf5fIeOCTZJ5PluAeW/stft9T6v4vs/2X /wBq/QrzwX8Z7C4bSZrq5hhg0/WLlRH5Hzo+2K6nR96bB5E2EeB/38EFfcR6UARk5X6g1/PP4i/4 SD+39UPi7+0f7c+2Tf2p/aW/7Z9p3/v/AD/M+fz9+/fv+ffXdg1758xxHdwpLuZlBOa7+W58kk73 P3x+CB8R/wDCmfAn/CXf2n/bX/CM6X/an9p+Z9s+1fZYvO8/f+887fv37vm35zzXenpXiPc/TqDb pJs+Hv2pf2+rjSPF95+y/wDsoaFeeNPjPf3C6TFdW0MM+n6PcsJPP+d32y3UCJvfePIhy7zv+4ng r1L9iD9knTv2R/hM3hSXU7PV/FOvTrqPiPVbe2WNHuNgRLWB9gke2g+fZ5nJeSeTZH53lpJsfSNF ABRQAUUAFFAHh37VP7LPw7/av+Hsng3xpB9h1WwEk+g65BGHu9JuWHLp/wA9IX8uMSQ5AkCjlHSO SP5G/wCFvfto/wDBPXW1079oGHVfjl8IJT/o/iqyaRr3SE+3eWZLueSMv5zpcJ/o11I8bu8EcF0P LkFAH1D8HP26v2WfjmbXT/B/xX0uw1m7+xomi6639lXpubo/u7WOOfYl1MJAUP2V5gH2fOfMTf8A Dn/BQX9l3xT8PviVr/xm8MeHbmfwR4hnhvr26jPmLp+p3Lv56SZkkk2STJ5m/Yib7uOBOdgrqw0u WWp42dYZ4igrdD49UKepr3/9kL9lzxT+0D8QNM1C78O3Unw/0rU0TxDfnEcToied9lj/AHiO7yeW kb+T88HnpJ/crvnV5IHyGCoVKuIVOx+k/wAY/wBuv9ln4Fm60/xh8V9Lv9ZtPtiPouhN/at6Lm1P 7y1kjg3pazmTCD7U8IL7/nHlvs+Xf+Fvfto/8FCtbbT/ANn6HVfgb8IIj/pHiq9aRb3V0+3eWJLS eOMP5yJbv/o1rIkaOk8c90fMjFeMfo60Vj65/ZW/ZZ+Hf7KHw9j8G+C4Pt2q34jn17XJ4wl3q1yo 4d/+ecKeZII4ckRhjy7vJJJ7jQMKKACigAooAKKACigD5Z+Lf/BN79kb4uW8jSfC208I6kbeO1h1 Dwlt0ZoUSbzMi2jQ2ju4MiM8kDvsfGfkjKeIz/8ABKLxb4ZTWPCfwg/bP+IHhDwNqxaSbw89rNcJ MZIY4Zzcm1vrWCfeI8f6hP3exDv2ZojK0hNJxszmF/4I1eI4rY24/a0mKYx83grc/wD33/aO79a7 Twn/AMEqtbTQJ/h78Tv2xviZr/gCS32J4Z0nfpVqJxOkyO8c9xdwOnmB32eSDvKPv+T59JVHUiZU sLSoT9qoq57D8I/+Cb37Ivwjt42j+Ftp4u1IW8lrNqHi3ZrLTI83mZNtIgtEdAI0WSOBH2JjPzyF /qaszYKKACigAooAKKACigAooAKKAPkj9ur4z/E74PaBoHxI+HjyJoPgDxFpOqeOEjBD3enXLvbL ax5wkmS/zpv+QyW719TaPq2m65pNjruk3UdxY6lbx3VtMn3JYZFDxv8AimKANGigAooAKKACigAo oAKKACigArE8S+ILbwroN94ivLHU72LT4Xmkt9MsZ7+6lH9yGCFHkkfjARATQB82P8N5vjr8G/FH irxX8SfjH4U0fxtZXVz4i8Inwnp0dxbF4FSS2W1n0R9QneOOOONHhd3cxjyX+5Wb/wAE8PGnxAt/ hFZfBH4n+A/HOj6x4H8+z0/U9b8J6lpNpqWkpMBavFNPAiCREkRPIciTYm/D7ZMAH2BRQAUUAFFA BRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQB/9k= ------=_NextPart_000_0000_01CAEE31.3E0A96D0--